Fate and Transport of Ethanol in the Environment

Presented to the Environmental Protection Agency Blue Ribbon Panel

Presented by
Michael C. Kavanaugh, Ph.D., P.E.
Andrew Stocking

May 24, 1999

Outline

- **▲** Properties
- **▲** Fate and Transport
- ▲ Biological Field / Lab Studies
- **▲ Impact on BTEX Plume Lengths**
- ▲ Remediation and Treatment
- **▲** Conclusions
- **▲ Research Needs**

Objectives

- ▲ The fate and transport of ethanol in the environment is well understood; however, the interactions between ethanol and other gasoline constituents and their resulting fate and transport is not well understood.
- ▲ Our objectives are to assess the likely fate and transport of ethanol in the soil and water within a range of geochemical conditions.

Production and History of Use

- **▲** 94% of Ethanol produced from corn fermentation
- ▲ Ethanol must be denatured prior to use
 - addition of 2% to 5% of approved denaturant
- ▲ In 1998, 15% of all oxygenated gasoline contained ethanol
 - 5.4% by volume ethanol corresponds to 2% by weight oxygen
 - Ethanol commonly added up to 10% by volume
 - Oil companies in Brazil use 24% ethanol by volume

Key Questions

- ▲ What is the fate of constituents of concern in gasoline following an ethanol release to the subsurface?
- ▲ What is the fate of ethanol following release to surface water?
- ▲ What is the impact of gasoline releases with ethanol on existing plumes - BTEX or MTBE?

Comparative Properties of Ethanol and Other Gasoline Additives

Property (@ 25°C)	MTBE	Benzene	Ethanol
Vapor Pressure [mm HG]	245	95	49 - 56
Reid Vapor Pressure (38°C) [psi] Solubility [mg/l]	7.8 43,000	2 1,780	18 miscible
Henry's Constant [-]	0.02	0.22	0.000252
Log K _{ow}	1.1 - 1.2	1.56 - 2.15	-0.160.32
California Drinking Water Maximum Contaminant Level [ppb]	5 (SMCL)	1 (MCL)	NA
% Used in Reformulated Gasoline	11 – 15%	< 1%	5% - 10%

Significance of Properties

▲ Properties

▲ Examples of Significance

- Aqueous Solubility → Rate of migration; bioavailability
- Vapor Pressure → Volatilization from LNAPL; Soil vapor extraction
- Henry's Constant
 Octanol/Water Partition
 Volatilization from water; Air stripping
 - Coefficient Rate of migration; Adsorption Potential
- Biodegradability → Plume size; in-situ biodegradation
- Reactivity → Oxidation potential
- Structure → Biodegradability; oxidation potential

Aqueous Solubility

Raoult's Law (holds for low contaminant concentrations)

$$C_{gw} = Sol_{theoretical} X_{gasoline}$$

- $C_{\text{MTBE,gw}} \cong (48,000 \text{ ppm})(11\%) = 5,280 \text{ ppm}$
- $C_{\text{benzene,gw}} \cong (1,750 \text{ ppm})(1\%) = 17.5 \text{ ppm}$
- ▲ Does not hold for miscible contaminants (e.g. ethanol, TBA, methanol)

$$- C_{ethanol,gw} \cong \frac{C_{ethanol,gasoline}}{MixingRatio*DilutionRatio}$$

- Actual source area ethanol concentrations higher than MTBE. i.e., <1,000 ppm
- ▲ High solubility (> 10,000 mg/L)
 - Fast dissolution
 - Lower sorption
 - Potential cosolvency effect

Vapor Pressure (mm Hg)

- ▲ As pure ethanol low vapor pressure
- ▲ In hydrocarbon plume non-ideal behavior - highly polar
 - Much higher effective vapor pressure
 - Reid vapor pressure (18 psi)
 greater than MTBE (8 psi) or
 benzene (2 psi)
 - greater tendency to volatilize

Henry's Law Constant (H)

- **▲** Ethanol Henry's Constant = 0.000252
- ▲ Henry's Constant < 0.05</p>
 - Volatilization from surface waters unlikely
 - Off-gassing from groundwater unlikely
 - Vapor phase retardation will be high

 $H [(atm-m^3)/(mole)] / RT = H[-]$

 $R = 0.08206 [(atm-m^3)/(mole-K)]; T = [\circ K] = \circ C + 273$

Log K_{oc}

$$R = 1 + \frac{f_{oc} K_{oc} \rho_{bulk}}{\eta}$$

$$R = 1 + \left(\frac{\theta_w}{\theta_a} \frac{1}{H}\right) + \left(\frac{f_{oc} K_{oc} \rho_{bulk}}{\theta_a H}\right)$$

▲ Increasing Koc increases retardation
 (R) for constant soil properties

$$\frac{R_{benzene}}{R_{MTBE}} \cong 4.5$$

$$\frac{R_{ethanol}}{R_{MTBE}} \cong 0.25$$

▲ As R approaches unity, contaminant moves at speed of groundwater

BTEX Plume Elongation: Possible Causes

- ▲ Increase in aqueous solubility of BTEX due to high ethanol concentration in water
- Preferential utilization of ethanol
- ▲ Larger volume of groundwater under anaerobic conditions; shift to methanogenic redox conditions.

Cosolvency of Ethanol

- ▲ Dependent on ethanol concentration in groundwater
 - function of dilution factors
 - concentration drops with distance from source
- ▲ Corseuil (1998) found ethanol concentrations >10,000 ppm will increase BTEX solubility
- ▲ Ethanol 10% in gasoline with 5-fold dilution factor results in groundwater concentrations of 20,000 ppm

Conceptual Model of BTEX Plume Elongation

Biodegradation of Ethanol

- ▲ Limited field studies to date
- ▲ Expected to rapidly biodegrade in groundwater and surface water
- ▲ Toxic at high concentrations (>100,000 ppm)
- ▲ One known methanol field study
 - Borden Field Site: half-life = 40 days
- Numerous microcosm laboratory studies of ethanol
 - Corseuil shows 80-100 mg/L degrading rapidly
 - Aerobically 5 days
 - Anaerobically 12 to 25 days

Summary of Literature Biodegradation Rates

ectron Acceptor	Range of Rates
	(day ⁻¹)
NO ₃ Fe ³⁺ SO ₄ -2	$0.53^{\ (1*)} \\ 0.17^{\ (1*)} \\ 0.1^{\ (1*)}$
naerobic Range	$0.0062 - 0.00096^{(3**)}$
NO ₃ Fe ³⁺ SO ₄ -2 Methanogenic	$0-0.045^{(2*)} \\ 0-0.024^{(2*)} \\ 0-0.047^{(2*)} \\ 0-0.052^{(2*)} \\ 0.0062-0.00096^{(3**)}$
	Fe ³⁺ SO ₄ -2 naerobic Range NO ₃ Fe ³⁺ SO ₄ -2

¹⁾ Estimated from Corseuil et. al., 1997; 2) Aronson et. al., 1997; 3) USGS, 1998; 4) Barker et. al., 1998;

^{*}Determined in a laboratory;

^{**} Estimated from first principles.

Ethanol Effect on BTEX Degradation

▲ Corseuil et al., 1998

- Ethanol retarded BTEX aerobic biodegradation in laboratory; rapidly reduced oxygen concentrations
- No benzene degradation observed under anaerobic conditions
- Ethanol slowed toluene anaerobic degradation

▲ Hunt et al., 1997

 Degradation of toluene completely inhibited until all the ethanol was degraded (aquifer microcosm)

▲ Barker et al., 1990

 Methanol inhibits degradation of BTEX due to initial toxic levels; later due to depletion of electron acceptors

Conceptual Model of BTEX Plume Elongation

Conceptual Model

Modeling Assumptions

- ▲ Modeled the degradation of benzene with and without ethanol present
- ▲ Alkane interactions and degradation were not considered
- ▲ Source area ethanol concentrations were assumed to be 4000 ppm (assumes 20-fold dilution)

Modeling Assumptions (cont.)

▲ 2-D Domenico Analytical Model includes:

- first order decay rate
- advection
- retardation
- dispersion

▲ Sensitivity Analysis of subsurface variables

- groundwater velocity: 0.004 0.4 feet/day
- organic carbon content: 0.01 0.005

Results

- ▲ Typical BTEX plumes in California and Texas travel no further than 300 ft from source
- ▲ Addition of ethanol to gasoline may extend BTEX plumes by 25% to 40%
- ▲ Higher source area ethanol concentrations would suggest a larger effect

Historical Benzene Plume Lengths

Technical Options for Remediation and Treatment of Ethanol

Possible Remediation

- ▲ Soil Vapor Extraction (SVE)
- ▲ Soil Heating/SVE
- ▲ Pump and Treat
- ▲ Air Sparging /SVE
- ▲ Multiple Phase Vacuum Extraction

Possible Treatment

- ▲ Steam Stripping
- Advanced Oxidation
- ▲ Resins

Proven Remediation

▲ Biological Degradation

Possible Treatment

▲ Biological activated filter

Conclusions

- ▲ Ethanol is miscible in water; does not adsorb nor volatilize
 - High potential source area concentrations
- ▲ Ethanol will rapidly biodegrade following release to the environment
 - rapid depletion of electron acceptors
 - suspected interference with hydrocarbon biodegradation
- ▲ Ethanol is preferentially biodegraded compared to other gasoline constituents (e.g., benzene, MTBE)
- If ethanol enters a drinking water supply, exsitu remediation will be difficult

Data Gaps and Unknowns

- ▲ Occurrence of ethanol in water in states using gasohol (MTBE Research Partnership)
- **▲ Impact of ethanol on BTEX plumes**
 - cosolvency (Corseuil, et al., 1999)
 - plume elongation (Corseuil, et al., 1999)
- ▲ Impact on costs of site characterization and remediation
- **▲ Impact of ethanol on MTBE plumes**
- ▲ Toxicity of ethanol in source area
 - fate of pure ethanol spill (Buscheck, Chevron)
- ▲ Treatment of ethanol-impacted drinking water (MTBE Research Partnership)